AKBON Boru Sanayi ve Ticaret Ltd Şti
AKBON Pipe Industry and Trade Inc

Quality Control Manual

WWW.akbor.com.tr
INDEX

1 QUALITY PLAN .. 3

2 TEST EQUIPMENT LIST ... 4
 2.1 Acceptance Tests ... 4
 2.2 Product Tests .. 4
 2.3 Long-Term Tests .. 4
 2.4 Device List .. 5

3 RAW MATERIALS ... 6
 3.1 Resin Receiving Inspection Test .. 6
 3.2 TM-02 Sand Receiving Inspection Test ... 10
 3.3 TM-03 Glassfiber Products Receiving Inspection Test .. 13
 3.4 TM-04 Gasket/Stopper Hardness .. 15
 3.5 TM-05 Gasket/Stopper Dimensional Control ... 16

4 VISUAL INSPECTION ... 17
 4.1 TM-06 Visual Inspection of Pipe and Couplings ... 17

5 DIMENSIONAL CONTROL ... 18
 5.1 TM-07 Pipe ID (Inner Diameter) Control ... 18
 5.2 TM-08 Pipe OD (Outer Diameter) Control ... 18
 5.3 TM-09 Wall Thickness Control .. 19
 5.4 TM-10 Chamfering and Calibration-DOS Control of Pipe 20
 5.5 TM-11 Length Control ... 20
 5.6 TM-12 Measurement of Coupling Grooves ... 21

6 TECHNICAL PARAMETERS ... 22
 6.1 TM-13 Ring Stiffness .. 22
 6.2 TM-14 Failure and Delamination Control At Deflected Position 23
 6.3 TM-15 Longitudinal Tensile Strength Test ... 25
 6.4 TM-16 Circumferential Tensile Strength Test .. 26
 6.5 TM-17 Surface Hardness ... 28
 6.6 TM-18 Pipe Leak Tightness ... 28
 6.7 TM-19 Coupling Leak Tightness .. 29
 6.8 TM-20 Raw Material Composition Test ... 29

7 TESTS FORMS ... 31
 7.1 Polyester Resin ... 31
 7.2 Silica Sand ... 31
 7.3 Glassfiber Hoop Roving ... 31
 7.4 Glassfiber Chop Roving ... 31
 7.5 EPDM Gasket ... 31
 7.6 Stiffness, Behaviour Under Deflection, Hardness Circumferential Strength Test Sheet .. 31
 7.7 Tensile Strength ... 31
 7.8 Quality Control .. 31
 7.9 Process Material Tracking .. 31

Rev-01 - 110910
Quality Plan

QUALITY PLAN

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Control</th>
<th>Frequency</th>
<th>Reference Standard/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester Resin</td>
<td>For each batch</td>
<td>ISO 2535, ISO 2555</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>For each batch</td>
<td>ISO 565</td>
<td></td>
</tr>
<tr>
<td>Hoop/Chop</td>
<td>For each batch</td>
<td>ISO 1887, ASTM D 2584</td>
<td></td>
</tr>
<tr>
<td>Gasket/Stopper</td>
<td>For each batch</td>
<td>ISO 7619</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual inspection</th>
<th>Control</th>
<th>Frequency</th>
<th>Reference Standard/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual inspection of pipe</td>
<td>For each pipe</td>
<td>ASTM D 3754</td>
<td></td>
</tr>
<tr>
<td>Visual inspection of Coupling</td>
<td>For each coupling</td>
<td>ASTM D 3754</td>
<td></td>
</tr>
<tr>
<td>Visual inspection-Fitting</td>
<td>For each fitting</td>
<td>ASTM D 3754</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensional control</th>
<th>Control</th>
<th>Frequency</th>
<th>Reference Standard/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe ID control</td>
<td>At production start</td>
<td>ASTM D 3567</td>
<td></td>
</tr>
<tr>
<td>Pipe OD control</td>
<td>For each pipe</td>
<td>ASTM D 3567</td>
<td></td>
</tr>
<tr>
<td>Thickness control</td>
<td>For each pipe</td>
<td>ASTM D 3567</td>
<td></td>
</tr>
<tr>
<td>Chamfering and calibration</td>
<td>For each pipe</td>
<td>Internal standard</td>
<td></td>
</tr>
<tr>
<td>Pipe length</td>
<td>For each pipe</td>
<td>Internal standard</td>
<td></td>
</tr>
<tr>
<td>Measurement of coupling grooves</td>
<td>For each coupling</td>
<td>Internal standard</td>
<td></td>
</tr>
<tr>
<td>Dimensional control of fittings (Angle, length)</td>
<td>For each fitting</td>
<td>Internal standard</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product performance</th>
<th>Control</th>
<th>Frequency</th>
<th>Reference Standard/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness Test</td>
<td>One per day or per 50 pipes</td>
<td>EN 1228, ISO 7685, ASTM D 2412</td>
<td></td>
</tr>
<tr>
<td>Failure control at inner surface under load</td>
<td>One per day or per 50 pipes</td>
<td>ASTM D 3754</td>
<td></td>
</tr>
<tr>
<td>Delamination control under load</td>
<td>One per day or per 50 pipes</td>
<td>ASTM D 3754</td>
<td></td>
</tr>
<tr>
<td>Longitudinal tensile strength</td>
<td>One per day or per 50 pipes</td>
<td>ASTM D 638, ISO 527</td>
<td></td>
</tr>
<tr>
<td>Circumferential tensile strength</td>
<td>One per day or per 50 pipes</td>
<td>ASTM D 2290</td>
<td></td>
</tr>
<tr>
<td>Surface hardness</td>
<td>For each pipe</td>
<td>ASTM D 2583</td>
<td></td>
</tr>
<tr>
<td>Pipe leak Tightness</td>
<td>For each pipe</td>
<td>AWWA C 950</td>
<td></td>
</tr>
<tr>
<td>Loss on ignition test</td>
<td>One per day or per 50 pipes</td>
<td>ASTM D 2584</td>
<td></td>
</tr>
<tr>
<td>Impact resistance</td>
<td>One per shift</td>
<td>BS 5480</td>
<td></td>
</tr>
<tr>
<td>Joint performance test</td>
<td>At production start</td>
<td>ASTM D 4161</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long term performance type test</th>
<th>Control</th>
<th>Frequency</th>
<th>Reference Standard/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long term strain corrosion test</td>
<td>Type test</td>
<td>ASTM D 3681, ASTM D 3262</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic design basis</td>
<td>Type test</td>
<td>ASTM D 2992</td>
<td></td>
</tr>
<tr>
<td>Long term ring bending strain (under construction)</td>
<td>Type test</td>
<td>ASTM D 5365</td>
<td></td>
</tr>
<tr>
<td>Long term specific ring stiffness (under construction)</td>
<td>Type test</td>
<td>EN 1225</td>
<td></td>
</tr>
</tbody>
</table>
2 Test Equipment List

2.1 Acceptance Tests
- **Viscosimeter**: For determining the viscosity of resin
- **Reactivity Test Equipment**: For determining reactivity properties of polyester resin and other chemicals.
- **Incubator**: For determining moisture in glass fiber products, sand filler and polymer contents of resin
- **Burning oven**: For determining loss of ignition of glass fiber and sand filler.
- **Thermometer**: For measuring heat of sand and resin.
- **Weighers**: For determining weights of several material and chemicals.
- **Sieves**: For determining particle size distribution of sand.
- **Calipers**: For measuring gasket and stoper dimensions.
- **Angle meter**: For controlling angular specifications of gaskets and stoper.
- **Shoremeter**: For measuring hardness of EPDM gaskets and stoper.
- **Zahn Cup**: For determining the viscosity of resin

2.2 Product Tests
- **Universal Test Equipment**: For determining axial tensile strength properties of pipe.
- **Hoop Tensile Strength Equipment**: For determining hoop tensile strength of pipe.
- **Stiffness Tester**: For determining the initial stiffness of a pipe.
- **Hydrostatic Tester**: For determining leaking properties of pipe under pressure.
- **Impact resistant Apparatus**: To determine impact resistant of pipe.
- **Barcol impressor**: For determining hardness of finished product and raw materials.
- **ID micrometer**: For measuring the inner diameter (ID) of pipe.
- **Circometer**: For measuring the outer diameter (OD) of pipe.
- **Caliper**: For measuring thickness, chamfering, coupling grooves etc.
- **Micrometer**: For thickness measurement
- **Band Meter**: For length of pipe and fittings.
- **Angle meter**: For controlling angles of fittings.

2.3 Long-Term Tests
- **Strain Corrosion Performance**: Long term
- **Ring Bending Strain**: Long term
- **Specific Ring Stiffness**: Long term
- **Hydrostatic Design Basis**: Long term
2.4 Device List

<table>
<thead>
<tr>
<th>No</th>
<th>CALIBRATION CODE</th>
<th>USED AREA</th>
<th>DEVICE TYPE</th>
<th>CALIBRATION RANGE</th>
<th>CALIBRATION FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I8G339</td>
<td>LABORATORY</td>
<td>MESH</td>
<td>0,125</td>
<td>1 Year</td>
</tr>
<tr>
<td>2</td>
<td>I8G340</td>
<td>LABORATORY</td>
<td>MESH</td>
<td>0,18</td>
<td>1 Year</td>
</tr>
<tr>
<td>3</td>
<td>I8G341</td>
<td>LABORATORY</td>
<td>MESH</td>
<td>0,3</td>
<td>1 Year</td>
</tr>
<tr>
<td>4</td>
<td>I8G342</td>
<td>LABORATORY</td>
<td>MESH</td>
<td>0,5</td>
<td>1 Year</td>
</tr>
<tr>
<td>5</td>
<td>I8G343</td>
<td>LABORATORY</td>
<td>MESH</td>
<td>0,71</td>
<td>1 Year</td>
</tr>
<tr>
<td>6</td>
<td>J8E040</td>
<td>LABORATORY</td>
<td>HUMIDITY MEASUREMENT</td>
<td>0-100</td>
<td>1 Year</td>
</tr>
<tr>
<td>7</td>
<td>J8E009</td>
<td>LABORATORY</td>
<td>CHRONOMETER</td>
<td>0-10</td>
<td>1 Year</td>
</tr>
<tr>
<td>8</td>
<td>I8G355</td>
<td>LABORATORY</td>
<td>ANGLE MEASUREMENT</td>
<td>0-180</td>
<td>1 Year</td>
</tr>
<tr>
<td>9</td>
<td>I8G352</td>
<td>LABORATORY</td>
<td>DIGITAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>10</td>
<td>I8G350</td>
<td>LABORATORY</td>
<td>MECHANICAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>11</td>
<td>I8G354</td>
<td>LABORATORY</td>
<td>METER (30m)</td>
<td>0-30000mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>12</td>
<td>J8S028</td>
<td>LABORATORY</td>
<td>LAB. THERMOMETER</td>
<td>_30± 50 ºC</td>
<td>2 Years</td>
</tr>
<tr>
<td>13</td>
<td>J8S029</td>
<td>FRONT OF WIND Mach</td>
<td>LAB. THERMOMETER</td>
<td>_30± 50 ºC</td>
<td>2 Years</td>
</tr>
<tr>
<td>14</td>
<td>J8S037</td>
<td>LABORATORY</td>
<td>LAB. THERMOMETER</td>
<td>_10± 110 ºC</td>
<td>2 Years</td>
</tr>
<tr>
<td>15</td>
<td>I8U018</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>700/1100mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>16</td>
<td>A56933</td>
<td>LABORATORY</td>
<td>VISCOSIMETER</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>I8T110</td>
<td>LABORATORY</td>
<td>SCALE</td>
<td>620gr</td>
<td>1 Year</td>
</tr>
<tr>
<td>18</td>
<td>I8T111</td>
<td>MECH LABORATORY</td>
<td>SCALE</td>
<td>300KG</td>
<td>1 Year</td>
</tr>
<tr>
<td>19</td>
<td>I8S165</td>
<td>LABORATORY</td>
<td>OVEN</td>
<td>300ºC</td>
<td>1 Year</td>
</tr>
<tr>
<td>20</td>
<td>I8S164</td>
<td>LABORATORY</td>
<td>OVEN</td>
<td>1100ºC</td>
<td>1 Year</td>
</tr>
<tr>
<td>21</td>
<td>H8F027</td>
<td>LABORATORY</td>
<td>SHORE-A</td>
<td>0-100</td>
<td>1 Year</td>
</tr>
<tr>
<td>22</td>
<td>L8U034</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>1100-1500</td>
<td>2 Years</td>
</tr>
<tr>
<td>23</td>
<td>L8U035</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>1500-1900</td>
<td>2 Years</td>
</tr>
<tr>
<td>24</td>
<td>L8U036</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>1900-2300</td>
<td>2 Years</td>
</tr>
<tr>
<td>25</td>
<td>E8B541</td>
<td>LABORATORY</td>
<td>MANOMETER</td>
<td>0-100bar</td>
<td>1 Year</td>
</tr>
<tr>
<td>26</td>
<td>J8S070</td>
<td>LABORATORY</td>
<td>DIGITAL TEMP.MEASUREMENT</td>
<td>_50± 200 ºC</td>
<td>2 Years</td>
</tr>
<tr>
<td>27</td>
<td>D8G704</td>
<td>LABORATORY</td>
<td>INNER DIAMETER</td>
<td>100mm-2100mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>28</td>
<td>J9F006</td>
<td>MECH LABORATORY</td>
<td>STIFFNESS TEST</td>
<td>1-20kN</td>
<td>1 Year</td>
</tr>
<tr>
<td>29</td>
<td>J9F005</td>
<td>MECH LABORATORY</td>
<td>TENSILE STRENGTH TEST</td>
<td>1-200kN</td>
<td>1 Year</td>
</tr>
<tr>
<td>30</td>
<td>I9U013</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>300/700mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>31</td>
<td>I9U016</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>1100/1500mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>32</td>
<td>I9U017</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>700/1100mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>33</td>
<td>I9U018</td>
<td>LABORATORY</td>
<td>CIRCOmeter</td>
<td>700/1100mm</td>
<td>2 Years</td>
</tr>
<tr>
<td>34</td>
<td>J9S317</td>
<td>LABORATORY</td>
<td>RESIN TEST DEVICE</td>
<td>0-300</td>
<td>1 Year</td>
</tr>
<tr>
<td>35</td>
<td>J9G336</td>
<td>PRODUCTION LINE</td>
<td>DIGITAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>36</td>
<td>J9G327</td>
<td>LABORATORY</td>
<td>ANGLE MEASUREMENT</td>
<td>0-180</td>
<td>1 Year</td>
</tr>
<tr>
<td>37</td>
<td>J9G469</td>
<td>LABORATORY</td>
<td>DIGITAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>38</td>
<td>J9G468</td>
<td>COUPLING ROOM</td>
<td>MECHANICAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>39</td>
<td>J9G469</td>
<td>LABORATORY</td>
<td>MECHANICAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
<tr>
<td>40</td>
<td>J9G468</td>
<td>LABORATORY</td>
<td>MECHANICAL CALIPER</td>
<td>0-150mm</td>
<td>1 Year</td>
</tr>
</tbody>
</table>
3 Raw Materials

3.1 Resin Receiving Inspection Test

Gel Time, Viscosity, Reactivity, Solid Content-Styrene Level

TEST-1 Physical Gel Time of Unsaturated Polyester Resin

1- Scope
This method covers determination of gel time of unsaturated polyester resin at room temperature.

2- Reference
This test is based on portions of ISO 2535-1997

3- Requirements
10-20 min @ 25°C and 300 cps

4- Frequency and Number of Samples
One sample for each batch

5- Apparatus
250 ml PP (polypropylene) tri-pour beakers or paper cups (plastic lined or wax lined)
Thermocouple or thermometer
Stainless steel spatula or stirrer
(Optional) Sunshine gel time meter

6- Reagents
1% cobalt octoate solution
Butanox M60 MEKP (methylethylketone peroxide)
Resin to be tested (viscosity as delivered)

7- Procedure
Weigh out 100 g resin into a PP beaker or paper cup
Add 1 g 1% cobalt octoate solution and mix well with stainless steel spatula.
Temper resin to 25°C.
Place PP beaker or paper cup into another stackable PP beaker or paper cup such that the resin is now insulated from ambient temperature or lab counter surface.
Add 1.1 g MEKP M50 or 1.0 g MEKP M60 (methylethylketone peroxide) to the resin which has been Tempered at 250°C (0.5°C), record starting time and mix well for 30 seconds.

Peroxide temperature must be within 20-25°C temperature range.
(Optional). Position gel tester over resin such that the 6 mm glass rod is centred in the resin and about 10 mm from the bottom of the cup or beaker.
Do not check for gelation until 10 minutes have passed. After 10 minutes, check for gelation every 30 seconds by moving the stick up and down in the centre of the cup until the resin sticks to the rod.

Record the time from when mixing of the peroxides begins, until gelation occurs.

Accuracy of 2 consecutive tests should be within 0.5 minute.

TEST-2 Determination of Viscosity

1- **Scope**

This method covers determination of viscosity of polyester resin measured by Brookfield Viscometer.

2- **Reference**

This test is based on ISO 2555, ASTM D 2196

3- **Requirements**

Viscosity as received @ 25 °C: 350-550 cps

4- **Frequency and Number of Samples**

One sample for each batch

5- **Apparatus**

· Brookfield Viscometer type: RVT or LVT
· 400 ml propylene beaker, Ø dIA~80 mm
· Thermometer
· Spindle # 3

6- **Procedure**

- Fill the 400 ml beaker full with resin.
- Temper the resin to 25°C ± 0.5 C
- The spindle is attached to the viscometer by screwing it onto the lower shaft.
- Note that the spindles have a left-hand thread. The lower shaft should be held in one hand and lifted up. The spindle should be screwed to the left.
- Insert and center spindle in the test material until the fluid’s level is at the immersion groove on the spindle’s shaft. Avoid trapping air bubbles beneath the disk by first immersing the spindle at an angle, and then connecting it to the viscometer.
- Adjust the speed to 50 rpm.
- Turn the motor ‘ON’. The spindle must rotate at least 5 times before readings are taken. Depress the clutch and turn off the motor, with the red pointer in view.

7- **Calculation**

The reading has to be multiplied with a factor varying with type of spindle and speed. For spindle #3 and speed 50 rpm, the factor is 20.

The result is given in centipoise.
TEST-3 Determination of reactivity of unsaturated polyester resin

1- Scope
This method is used to determine the reactivity of unsaturated polyester resin used in AKBOR pipe.

2- References
This test method is partially based on ISO 584

3- Requirements
CURING PROPERTIES (Resin diluted with styrene monomer to 300 +/- 25 cps)

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 - 35°C (a)</td>
<td>12 - 24 min</td>
</tr>
<tr>
<td>65 - Exotherm peak (b)</td>
<td>< 40 min</td>
</tr>
<tr>
<td>Exotherm peak</td>
<td>145 - 185°C</td>
</tr>
<tr>
<td>b/a</td>
<td>2-3</td>
</tr>
</tbody>
</table>

4- Frequency and Number of Samples
One sample for each batch

5- Apparatus
Test tubes, 18 mm nominal O.D. (outside diameter), wall thickness 1.2mm +/- 0.2 mm, length by 150 mm. Longer test tubes may be used as long as thermocouple is centered properly.

Foam Block (details listed below)
J type thermocouple
Temperature recorder/meter (compatible with type J thermocouple)
Centering device (polyethylene)

6- Reagents
Butanox M60 MEKP (methylethylketone peroxide) for high reactivity resins or Butanox LPT MEKP for low reactivity resins.

Cobalt-octoate, (1 % Co)
Resin to be tested -as received - 300 cps

7- Procedure
Weigh out 100 g resin into a PP beaker or paper cup.

Add 1 g (1% cobalt octoate solution) and mix well with stainless steel spatula.
Temper resin to 25°C.

Place PP beaker or paper cup into another stackable PP beaker or paper cup such that the resin is now insulated from ambient temperature, lab counter surface, or operators hand.

Make certain that thermocouple has a very light coating of silicone grease. Care
should be taken to ensure that test tube & thermocouple assembly is also tempered to 25°C. This can be done by immersing tube in a 25°C water bath for a minute, then wiping of water without transferring heat from the hand to the lower part of the test tube. Test tube and thermocouple assembly should rest in foam block for 5 minutes to ensure that the assembly measures 25°C +/- 0.5°C.

Add 1.0 g Butanox M60 (methylethylketone peroxide) to the resin which has been tempered at 25°C (+/- 0.5°C), record starting time and mix well for 30 seconds.

Peroxide temperature must be within 20-25°C temperature range.

Pour resin into test tube to a height of 75mm.

Place thermocouple in the test tube using the centering device so that the end of the probe is positioned in the center of the resin mixture.

Place test tube into foam block.

Record the time it takes to reach each temperature event.

Both the resin and foam block should be at 25°C. It is important that the foam block is conditioned at 25°C for at least an hour. This time can be shortened if 25°C or cooler compressed air is used to cool the hole in the foam block. This would be required when running multiple tests. The test tube assembly is placed into the foam block and the time to reach the various temperature events is recorded. The start time for the test is the moment the peroxide is mixed into the resin. See below for other temperature events. A chart recorder can be convenient to monitor the temperature of the resin as it reacts. If multiple tests are to be run, cool the hole or make multiple foam blocks (see specifications below).

Foam Block:
The polyurethane foam block density is 30-50 kg/m³ (2-4 lb/ft³). A multi-cavity block will have the following dimensions: Length/width/height = 300mm/100mm/170mm. Circular holes in the foam block are 22mm diameter and 120mm deep in the middle of the block with a minimum distance of 50mm from the center of one hole to the center of another hole and 50mm from the center of a hole to the edge of the block. A smaller single cavity block may be 100mm/100mm/170mm.

TEST-4 Determination of solids content (styrene level) of liquid polyester resin

1- **Scope**

This method covers determination of solids content of liquid polyester resin (the monomer usually is monostyrene).

2- **Reference**

ISO 3251

3- **Requirements**

Solid Content min. 55 %

Styrene Level max. 45%

4- **Frequency and Number of Samples**

One sample for each batch

5- **Apparatus**

Tin box lid, diameter approx. 60 mm
Balance with 0,01 g accuracy
Heating cabinet

6- Procedure
Weigh the empty lid and weigh out 2 g of resin (viscosity 300 +/- 25 mPa’s/25°C) into it.
Place the lid with polyester resin in a heating cabinet at 150°C for 1 hours.
Take the lid out of the heating cabinet and cool down in a desiccator and weigh again.

Calculation
PERCENT SOLIDS = (B/A) . 100 %
A=weight of resin before drying
B= weight of resin after drying
After finding the solid content, the rest of it is styrene level.

3.2 TM-02 sand Receiving Inspection Test
TEST-1 Particle Size Distribution on Sand Filler

1- Scope
This method covers the determination of particle size distribution of sand within the range of 0-1 mm.

2- Reference
ISO 565 & Internal Standards

3- Requirements

<table>
<thead>
<tr>
<th>Micron</th>
<th>>=710</th>
<th>500-710</th>
<th>300-500</th>
<th>180-300</th>
<th>0-180</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0-1</td>
<td>0-6</td>
<td>40-62</td>
<td>30-53</td>
<td>0-7</td>
</tr>
<tr>
<td>Acceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4- Frequency and Number of Samples
For each batch

5- Apparatus
Standard Sieves (ISO 565): 710, 500, 300, 180 micron
Shaking apparatus
Weight sensitive to 0,10 g.

6-Procedure
-Weigh each sieve.
-Put the whole series of sieves together according to increasing numbers and mount them in
the shaking apparatus.
- Weigh out exactly 1000 g of the sand and pour it onto the upper sieve.
- Shake for 6 minutes.
- Weigh each of the sieves again and calculate the sand residue on each of them.
- The cumulative percentage of sand is to be plotted on a graph.

TEST-2 Moisture Content in Inorganic Fillers
1. Scope
This method covers determination of moisture in inorganic fillers like sand, quarts etc.

2- Reference
AKBOR Internal standards

3- Requirements
Max: 0,1 %

4- Frequency and Number of Samples
For each batch

5- Apparatus
Porcelain cup (d = 75 mm)
Desiccator
Balance sensitive to 0,1 mg Heating cabinet

6- Procedure
- Make the porcelain cup dry by putting it into the heating cabinet at 150°C + 3°C for 20 minutes. Cool it down in a desiccator.
- Weigh out exactly approx. 50 g of the filler into the cup.
- Put the cup with the filler into a heating cabinet at 150°C + 3°C and leave it there for 1 hour. Cool down in desiccator.
- Weigh again and calculate the loss of weight during drying as % moisture.
- Run at least 4 parallel tests and calculate the average.

TEST-3 Wetting Properties of Sand Filler
1. Scope
This method gives relative values for the wetting properties of sand fillers. The method compares one or more sand types with a known sand type. Use the same resin for all samples, making sure temperature and viscosity are according to the procedure below.

The method can also be used for comparing wetting properties of different polyester resins, and to establish a reference base and acceptance level for local raw materials.

2- Reference
AKBOR Internal standards

3- Requirements
Max: 3,5 min.

4- Frequency and Number of Samples
For each batch

5- Apparatus
Cup with a diameter of approx. 60 mm and a depth of 6 mm (i.e. a 1/4 l tin lid).
Weight sensitive to 0,01 g

6- Procedure
- Adjust the temperature of cup, sand and polyester solution to 25 °C +/- ± 1° C.
- Adjust the resin viscosity to 250 cps.
- Overfill the cup with sand and cut off the excess with a spatula.
- Place the filled cup on the weight and add 3 ± 0,1 g of the polyester solution in the centre of the cup.
- Note the time elapsed from the polyester solution is added until all the polyester solution is absorbed into the sand.
- Run 3 parallel tests and calculate the average.

TEST-4 Determination of loss on ignition of inorganic fillers

1- Scope
This method covers determination of loss on ignition of inorganic fillers like sand, quarts etc.

2- References
AKBOR Internal Standards

3- Requirements
Max: 0,5 %

4- Frequency and Number of Samples
For each batch

5- Apparatus
- Porcelain cup (d=75 mm)
- Desiccator (drying apparatus)
- Balance sensitive to 0,1 mg
- Electric muffle furnace
6- Procedure
- Make the porcelain cup free of organic material by putting it in the muffle furnace for 30 min. Cool down in a desiccator. To avoid extreme temperatures in desiccator the porcelain cup can be pre-cooled in a heating cabinet at 105°C.
- Weigh out approx. 50 g of the filler into the cup. The filler is pre-dried according to moisture content test.
- Put the cup with the filler in the muffle furnace at 610°C +/-10°C for 30 minutes. Cool down in a desiccator as described in step 1.
- Weigh again and calculate the loss of weight as loss on ignition.
- Run at least 4 parallel tests and calculates the average.

3.3 TM-03 glassfiber products Receiving Inspection Test
Hoop, chop & other glassfiber products

TEST-1 Moisture content of glass fiber products

1- Scope
This method covers determination of moisture in glass fiber products like roving and strand mats.

2- Reference
ISO 1887, ASTM D 2584

3- Requirements
Chop Max: 0.07 %
Hoop Max: 0.15 %

4- Frequency and Number of Samples
For each batch

5- Apparatus
· Porcelain cup
· Desiccator
· Balance sensitive to 0,1 mg
· Heating cabinet
6- Test Specimen

Glass fibre roving

The following table gives the quantity of roving to take as function of the linear density of the roving.

<table>
<thead>
<tr>
<th>Linear density</th>
<th>Length of roving samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>tex</td>
<td>meters</td>
</tr>
<tr>
<td>50 < Tex < 200</td>
<td>100</td>
</tr>
<tr>
<td>200 < Tex < 500</td>
<td>50</td>
</tr>
<tr>
<td>500 < Tex < 1000</td>
<td>20</td>
</tr>
<tr>
<td>1000 < Tex < 2500</td>
<td>10</td>
</tr>
<tr>
<td>2500 < Tex < 5000</td>
<td>5</td>
</tr>
</tbody>
</table>

Strand mats

Each specimen shall have a mass of not less than 5 g.

7- Procedure
- Make the porcelain dry by putting it into the heating cabinet at 105 °C ± 3 °C for 30 minutes. Cool it down in a desiccator.
- Weigh out exactly the specimen into the cup and put it in the heating cabinet for 3 hours. Cool down in a desiccator.
- Weigh again and calculate the loss of weight during drying as % moisture.
- Run at least 4 parallel tests and calculate the average.

TEST-2 Loss on ignition - glass fiber products

1- Scope
This test determines the loss on ignition of glass fiber roving and mats. The loss on ignition is equal to the content of size and finish on the glass fiber.

2- Reference
ISO 1172, ISO 3374, ASTM D 2584

3- Requirements
Chop Max: 1.8 %
Hoop Max: 0.75 %

4- Frequency and Number of Samples
For each batch

5- Apparatus
- Porcelain cup
- Desiccator
- Balance sensitive to 0,1 mg
- Electric muffle furnace
6- Test Specimen

Glass fiber roving
The following table gives the quantity of roving to take as a function of the linear density of the roving.

Strand mats
Each specimen shall have a mass of not less than 5 g.

7- Procedure

- Dry the specimen in a heating cabinet
- Make the porcelain cup free of organic material by putting it in the muffle furnace for 30 min. Cool down in a desiccator. To avoid extreme temperatures in dissector, the porcelain cup can be pre-cooled in a heating cabinet at 105°C.
- Weigh out exactly the specimen into the cup and put the cup in the muffle furnace at 610°C +/- 10°C for 30 minutes. Cool down in a desiccator.
- Weigh again and calculate the loss of weight as loss on ignition.
- Run at least 4 parallel tests of each glass type.

3.4 TM-04 gasket/stopper hardness

1- Scope
This test method specifies a method for the determination of the indentation hardness of elastomeric products (gasket, center register, hydrotester seals etc.)

2- Reference
En 681-1 elastomeric seals –materials requirements for pipe joint seals used in the water and drainage Applications

3- Requirements
Gasket: 55 +/- 5 Shore A
Stopper: 80 +/- 5 Shore A

4- Frequency and Number of Samples
For each batch

5- Apparatus
Shore-type durometer: Type A (Shoremeter)
6- Test Specimen

1- For the determination of hardness by pocket hardness meters, the thickness of the piece shall be at least 6 mm.

For sheets thinner than 6 mm, a test piece may be composed of not more than three layers, none of which shall be than 2 mm, to obtain the necessary thickness, but determinations made on such test pieces may not agree with those made on single-thickness pieces.

2- Place the test piece on a hard, rigid surface. Hold the hardness meter in position with the centre of the indentor at least 12 mm from the edges of the test piece. Apply the pressure foot to the test piece as rapidly as possible, keeping the foot parallel to the surface of the test piece and ensuring that the indentor is normal to the rubber surface.

Apply just sufficient force to obtain firm contact between the pressure foot and the test piece. Unless otherwise specified, take the reading within 1 s after the pressure foot is in firm contact with the test piece. When a reading after another time-interval is specified, hold the pressure foot in contact with the test piece without change in position and pressure and take the reading after the specified time.

3- Make five measurements of hardness at different positions on the test piece at least 6 mm apart and determine the mean value.

3.5 TM-05 gasket/stopper dimensional control

1- Scope
This method specifies the method of gasket and stopper dimensional check.

2- Reference
Internal Standard

3- Requirements
For Gasket:

<table>
<thead>
<tr>
<th>Property</th>
<th>Dimension</th>
<th>EPDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile tolerance</td>
<td>mm</td>
<td>±0,5</td>
</tr>
<tr>
<td>Length tolerance</td>
<td>%</td>
<td>± 1.0%</td>
</tr>
<tr>
<td>Weight tolerance</td>
<td>%</td>
<td>± 1.5%</td>
</tr>
</tbody>
</table>

For Stopper:

<table>
<thead>
<tr>
<th>Property</th>
<th>Dimension</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile tolerance</td>
<td>mm</td>
<td>±4</td>
</tr>
<tr>
<td>Length tolerance</td>
<td>%</td>
<td>± 1</td>
</tr>
</tbody>
</table>

4- Frequency and Number of Samples
For each batch
5- Apparatus
· Calliper accurate to within 0.1 mm
· Meter Tape +/- 1 mm
· Angle measurement device +/- 0.5 degree

6- Procedure
- To measure the length of gasket/stopper, cut the gasket/stopper and place it to straight and rigid plate longitudinally.
- Fix the tape meter from one end of sample and directly measure the length from the other end.
- Use calliper to measure the profile dimensions for gasket/stopper.
- Use the angle measuring device to measure the angular dimension for gasket/stopper or angular value of the quality report from supplier can be referred for income tests.
- Make all the measurements twice and write them to the related forms.

4 Visual inspection

4.1 TM-06 visual inspection of pipe and couplings

1- Scope
This test method specifies a method for the visual inspection of pipe and coupling products.

2- Reference
ASTM D 3754

3- Requirements
For all products: Each product shall be free from all defects including indentations, delaminations, bubbles, pinholes, cracks, pits, blisters, foreign inclusions and resin-starved areas due to their nature, degree or extent detrimentally affect the strength and serviceability of the pipe.

4- Frequency and Number of Samples
All products shall be tested.

5- Procedure
Visual Inspection - Inner/Outer Surface of Pipe
Look at inner/outer surface and both ends of pipe/coupling pipe carefully. Control if there is any nonconformity causes by process, impact, transport etc.
If it’s OK;
- Mark OK box at related form for pipe,
- Write OK and sign at the Q/C inspector box at related form for coupling pipe,
- If there is any nonconformity that can be corrected by repairing for pipe, write repair request and repair code and control after repairing,
- There is no need to repair for coupling pipe inner surface as the coupling pipe will be milled at coupling milling machine.
Visual inspection – Coupling Inner /Outer Surface and Grooves

Look at inner surface and both ends of coupling carefully. Control if there is any nonconformity causes by process, impact, transport, milling etc.
If it is OK, mark and sign Q/C Visual Inspection OK box at related form

5 Dimensional control

5.1 TM-07 pipe id (inner diameter) control

1- Scope
This test method specifies a method for the measurement of Pipe/Coupling ID

2- References
ASTM D 3567 ASTM D 3754

3- Requirements
Dependent on pipe type

4- Frequency and Number of Samples
For each pipe

5- Apparatus
Inner Micrometer

6- Procedure
- Adjust the ID micrometer according to ID needed.
- Measure the ID from six different points by 60° angles.
- Calculate the average of six measurements and write all the measurement made to the FPR-01/06_ADPM

5.2 TM-08 pipe od (outer diameter) control

1- Scope
This test method specifies a method for the measurement of Pipe/Coupling OD

2- References
ASTM D 3567 ASTM D 3754

3- Requirements
Dependent on pipe type

4- Frequency and Number of Samples
For each pipe
5- Apparatus
 - Tape
6- Procedure
 - Choose the correct -Tape to measure accordance with OD needed
 - Measure the OD from pipe ends and take care of placement of -Tape to right
 measurement.
 - Write values measured to related form

5.3 TM-09 wall thickness control

1- Scope
This test method specifies a method for the measurement of Pipe/Coupling thickness.

2- References
ASTM D 3567

3- Requirements
Dependent on pipe type

4- Frequency and Number of Samples
For each pipe

5- Apparatus
 - Calliper
 - Micrometer
 - Thickness Calliper
For this test method; calliper, micrometer, thickness calliper can be used for measurement of
thickness.

6- Procedure

1- When micrometer is used, get into tips of micrometer to the inside of pipe.

2- After ensuring "the tips are parallel", tight the micrometer bolt and read value.

3- When calliper is used, get into tipps of calliper to the inside of pipe.

4- When the tips are parallel, read the value.

5- Apply 3- and 4- when the thickness calliper is used.

6- Make measurements six times (6 x 60°) for each pipe and write the values to related
form.
5.4 TM-10 Chamfering and Calibration-DOS Control of Pipe

1- Scope
This test method specifies a method for pipe chamfering and calibration control.

2- References
Internal Standard

3- Requirements
DOS and chamfering parameters shall meet AKBOR internal requirements.

4- Frequency and Number of Samples
For each pipe

5- Apparatus
- Tape
 Calliper

6- Procedure
- To check the OD after calibration (DOS)
- Use calliper to measure chamfering parameters.
- For each pipe ends , make 6 x 60° measurements and calculate average.
- Write the values calculated to related form.

5.5 TM-11 Length Control

1- Scope
This test method specifies a method for pipe/coupling length control

2- References
ASTM D 3754

3- Requirements
12000 +/- 25 (mm)

4- Frequency and Number of Samples
For each pipe

5- Apparatus
Tape (20 m & 5m)

6- Procedure
- Pipe Length Control: Use 20 meter tape to measure pipe length. Fix the tape at one end of pipe. Tighten the tape and fix at the other end. Read Value write to related form.
- Coupling Length Control: Use 5 meter tape to measure coupling length. Fix the tape at one end of coupling. Tighten the tape and fix at the other end. Read Value write to related form.

5.6 TM-12 measurement of coupling grooves

1- Scope

This test method specifies the measurement of coupling grooves

2- References

Internal Standard

3- Requirements

![Diagram of coupling grooves]

Diameters >= 600 mm

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>330 +3/-3</td>
</tr>
<tr>
<td>B</td>
<td>40 +1/-1</td>
</tr>
<tr>
<td>C</td>
<td>34 +1/-0.5</td>
</tr>
<tr>
<td>D</td>
<td>83 +1/-1</td>
</tr>
<tr>
<td>E</td>
<td>16 +1/-0.5</td>
</tr>
<tr>
<td>G</td>
<td>14.5 +0.5/-0.5</td>
</tr>
</tbody>
</table>

4- Frequency and Number of Samples

For each coupling

5- Apparatus

Caliper

6- Procedure

Measure for coupling

- Depth of both gasket channel
- Width of both gasket channel
- Depth of stopper channel
- Width of stopper channel
6 Technical parameters

6.1 TM-13 Ring stiffness

1- Scope

This test determines the initial stiffness of a pipe using a parallel-plate loading device at a short length of pipe. This method also covers the ring deflection properties.

2- References

ASTM D 2412, EN 1228, ISO 7685

3- Requirements

Standard Stiffness classes 2500,5000,10000 (Pa), But it is possible to produce according to customer requirements

4- Frequency and Number of Samples

One per day or one per 50 pipes (whichever comes first)

5- Apparatus

Parallel-plate loading stiffness tester (STIS tester)

6- Test Specimen

Test specimens shall be cut from the pipe to be tested. The test specimen length shall be 300 mm. Permissible deviation is +/- 15 mm (5%). The ends of specimens shall be cut square and shall be free of burrs and jagged edges. ISO 7685 requires the specimen to be conditioned 0.5 h at the test temperature prior to testing.

7- Procedure

- Measure the thickness at 6 places 60° apart along the circumference (± 0.2 mm) on both sides of the pipe. Calculate the average thickness of these 12 measurements.
- Measure the inner (or external) diameter with an accuracy of 0.5 mm. The mean diameter to be used in the STIS calculations is equal to inner diameter + pipe thickness (or, alternatively: external diameter - pipe thickness). If measuring the diameter with a pair of callipers, take 6 measurements 60° apart and calculate the average. Enter the mean diameter on the STIS tester terminal.
- Measure the average pipe ring length (± 0.2 mm, 6 places 60° apart) and enter it on the STIS tester terminal.
- The specimen is placed in the testing equipment with the two parallel plates aligned 180° apart. ISO 7685 specifies a deflection of (3 +/- 0.5)% of the mean diameter.
- Enter 3% as Max. deflection on the STIS tester display. Lower the top plate to just touch the pipe and reset the display to zero load and zero deflection. To compensate for the inherent slack in the STIS tester and the uneven pipe surface (see note 2), compress the pipe sample 1% of the mean diameter. For pipes DN300-500 deflection-measurement must be done using a micrometer, record the inner diameter of the pipe.
- On the STIS tester terminal, reset to zero deflection and zero load. This is important before deflecting the sample the additional 3 % for measuring the STIS.
- Apply compression to the specimen at a constant rate and observe the deflection measurements.
- Cease applying the compression force when the required deflection is reached. ISO 7685 specifies 60 +/- 10 sec to reach the specified 3% deflection.
- Allow the test specimen to stabilise at the maximum deflection for 2 minutes.
- Read the STIS, the maximum force and the deflection at maximum force.
- For the tests where the STIS value is within 5% of specified, the test needs to be carried out two more times on the sample. The test shall be done on locations evenly distributed around its circumference (60° and 120° from the first location). Calculate the average of the three values to obtain the STIS of the test sample.

STIS Calculation

Standard Tangential Initial Stiffness

Calculate the Standard Tangential Initial Stiffness (STIS) from the formula below:

\[
\text{STIS} = \frac{(f \times F)}{(L \times y)}
\]

The STIS is expressed in N/m².

F = force (N) used to give the test specimen a deflection of 2.5 - 3.5 %, based on mean diameter.
F = deflection coefficient (see below).
L = average ring length (m)
y = deflection (in meters) of the ring at maximum force

The deflection coefficient can be calculated from the formula:

\[
f = 0.0186 + \left[\frac{(0.025 \times y)}{D} \right]
\]

D = mean diameter of the ring (m)

The STIS is explained by the formula:

\[
\text{STIS} = \frac{E \times I}{D^3}
\]

Modulus of elasticity

Calculate the modulus of elasticity from the formula below using data from stiffness test:

\[
\text{ESTIS} = \text{STIS} \times \frac{12 \times D^3}{t^3}
\]

STIS = The calculated STIS value from the test (N/m²)
D = mean diameter of the ring (m)
L = average ring length (m)
t = average thickness of the pipe (m)

6.2 TM-14 Failure and delamination control at deflected position

1- Scope

This test method specifies method of pipe inspection under deflection.

2- References

ASTM D 2412, ASTM D 3754, ASTM D 3517
3- Requirements
No crack and No delamination

4- Frequency and Number of Samples
One per day or one per 50 pipes (whichever comes first)

5- Apparatus
STIS tester

6- Procedure
To determine the full laminate hoop load capacity, the test ring is to be tested according to certain deflection levels. The test ring is deflected according to the table enclosed, and has to meet the listed specifications.

Level A:
When deflected to this ratio the test ring shall have no surface cracks. The surface cracks will appear in areas with the highest strains - 6 and 12 o'clock at the inner surface, 3 and 9 o'clock at the outer surface. The surface cracks will be visible to an unaided eye, but a penetrating liquid may be used. The test ring shall not have any delamination.

Level B:
When deflected to this ratio the test ring shall have no failure. Failure is defined as structural failures as delamination and rupture. Cracks in the surface is not failure.

<table>
<thead>
<tr>
<th>Stiffness psi (kpa)</th>
<th>9(62)</th>
<th>18(124)</th>
<th>36(248)</th>
<th>72(496)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness N/m²</td>
<td>1250</td>
<td>2500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>Level A</td>
<td>%18</td>
<td>%15</td>
<td>%12</td>
<td>%9</td>
</tr>
<tr>
<td>Level B</td>
<td>%30</td>
<td>%25</td>
<td>%20</td>
<td>%15</td>
</tr>
</tbody>
</table>

Calculation for non-standard STIS values.

According to ISO 7685

Force to be applied in theory can be calculated as

\[STIS = \frac{(f \times F)}{(L \times y)} \]

\[F = \frac{(L \times y \times STIS)}{f} \]

Where
\(f \) is the deflection coefficient, given by the equation,

\[f = \cdot 1860 + (2500 \times y/dm) \times 10^{-5} \]

\(L \) is the average length of the test piece, expressed in meters;

\(F \) is the applied load, expressed in newtons;

\(y \) is the deflection, expressed in meters;

\(dm \) is the mean diameter, expressed in meters.
After calculating F from this equation, according to ASTM D 2412 Pipe Stiffness (PS) is calculated as follows:

$$PS = \frac{F}{(L \times y)}$$

PS is expressed Pa

According to ASTM D 3517 Level A and Level B can be calculated.

Convert PS value from Pa to psi.

% Level A = \(\frac{72}{PS} \times 0.33 \times 9 \)

% Level B = % Level A / 0.6

6.3 TM-15 Longitudinal Tensile Strength Test

1- Scope

This method covers determination of tensile strength of laminates made on filament winding machines or cut-outs from spray up laminates and hand lay-ups.

2- References

ASTM D 638, ISO 527

3- Requirements

Minimum Longitudinal Tensile Strength (kN/m) Ref:ASTM D 3754

From 300 to 2400 1,6,10,12,16,20,25,32 2500-5000-10000 See attached list of Longitudinal Tensile Strength

4- Frequency and Number of Samples

One per day or one per 50 pipes (whichever comes first)

5- Apparatus

Test machine - Universal test machine
Micrometer suitable for measuring the dimensions within +/- 0.01 mm

6- Test Specimen

The width of the test specimen shall be 25 mm as standard. The width of the specimen may be reduced if the laminate is so thick that the tensile force is out of range of the test machine.

The number of test pieces shall be at least five. When testing spray-up laminates or hand lay-ups, test pieces shall be cut out from the two main directions, lengthways and crosswise. At least five test pieces from each direction shall be tested. Length of test specimens shall be 300mm. Other test pieces may be used, but shall be remarked in test report.
Procedure

Preparation
The testing equipment shall be set to the suitable range for the specific type of test specimen, and according to operation manual for the testing equipment. The distance between the grips shall be 170 mm. Fix test specimen in the grips, aligned to prevent oblique tension. The testing speed should be set to 10 mm/min.

Result
- Read the maximum tensile force at rupture.
- Measure the average width and average thickness of the test specimen nearest possible to the rupture.
- Note that the dimensions of the test specimen may have changed due to fibre pull-out.

Calculate the tensile strength from the formula below

Longitudinal Tensile Strength (Mpa) = \(\frac{F}{b \times h} \)

F = maximum force in Newton
b = width of the test specimen in mm
h = mean thickness of the test specimen in mm

Those specimens that break within 10 mm from the grips shall not be considered as valid. New specimens shall in these cases be tested.

6.4 TM-16 circumferential tensile strength test

1- Scope

Split Disk Method: This method covers determination of hoop tensile properties (circumferential strength). The test specimen is a ring 20 mm wide cut out from a pipe. The test procedure is adapted to split disc hydraulic equipment.

Coupon Method: For this test method, ring samples are cut from the pipe and notched. The samples are tested as coupons placed directly in the grips of a standard tensile testing machine.

This coupon test method is applicable for all pipes larger than DN600, and gives the best tolerance of measurement compared to the Split Disk method.

2- Reference

ASTM D 2290, (also EN1394, test report)

3- Requirements
Minimum Hoop Tensile Strength, Ref: ASTM D 3754 (kN/m)

From 300 to 2400: 1,6,10,12,16,20,25,32 2500, 5000, 10000 See attached list of Hoop Tensile Strength

4- Frequency and Number of Samples
One per day or one per 50 pipes (whichever comes first)

5- Apparatus

Test machine
Micrometer suitable for measuring the dimensions within +/- 0.01 mm
6- Test Specimen

Cut out sample from the cylinder to be tested. The samples shall be cut in the circumference, perpendicular to the cylinder axis with a uniform width of 20 mm.

The test ring shall be machined with two reduced cross-sections located at the point of minimum wall thickness and at 180°. The reduced cross-section shall have a width of 10 mm (notches are 10 mm in radius).

- Select a testing speed of 10 mm/min and start the machine (so that rupture can be reached between 1 min and 3 min after initial loading).
- Record the ultimate load carried by the specimen and the time to failure.

Calculation

Calculate the apparent tensile strength from this formula:

\[\text{apparent tensile strength} = \frac{F}{2 \times w} \]

\(F \) = load in N
\(w \) = ring width in mm (w is measured in the reduced cross-section)

Coupon Method

Test Specimen
Cut out five samples from the pipe to be tested. The samples shall be cut in the circumferential direction, perpendicular to the axis of the pipe. The samples shall be cut 20 mm wide.

The test coupon shall be an arc (part of a pipe ring) of length 150 mm and shall be machined with a reduced cross-section at mid-length. The reduced section shall have a width according to table 1 and shall be formed by two 10 mm diameter holes.

Procedure

- Measure the width at the reduced section of the test specimen (+/- 0.1 mm). Use the average of outside and inside measurements.
- Load the test specimen in the jaws of the testing machine so that the sample is gripped across its width i.e. across the 20 mm dimension. It is important that the faces of the test specimen in contact with the grips shall be smooth and perpendicular to the axis of the pipe.
- To prevent shear failure, the sample shall be gripped in the jaws of the machine so that the distance between the grips is 15-5 mm (Lg). The total sample length of the test specimen shall be adjusted to suit the grip arrangement.
- Test the specimen at a speed of 5 mm/min and record the ultimate load carried by the test specimen.
- After failure, inspect the test specimen and check that cracking occurred at the reduced section and in a direction perpendicular to the applied load.

In the event of failure occurring by delamination without rupture in the reduced cross-section or by grip crushing of the specimen, repeat the test using specimens made with a reduced section width of 5 mm.

7-Procedure

- Measure the width of the test specimen at the location of the reduced cross-section (± 0.1 mm). Use the average of outside and inside measurements.
- Place the test ring in the test fixture with the reduced cross-section approximately 10° away from the split in the fixture.
- Lubricate the inside of the ring to avoid friction between the test ring and the fixture.

6.5 TM-17 surface hardness

1- Scope

This method covers determination of reinforced and non-reinforced rigid plastics using a Barcol impressionor (type 934-1).

2- Reference

ASTM D 2583

3- Requirements

Min. 40 Barcol

4- Frequency and Number of Samples

For all pipe

5- Apparatus

The apparatus used for this test is an Barber-Coleman indentor with calibration alloy discs supplied by the manufacturer.

6- Test Specimen

The test specimen can be a pipe or a section from the products. Test specimens shall be large enough to ensure a minimum distance of 3 mm in any direction from the indentor point to the edge of the specimen. Test specimen shall be free from mechanical damage.

7- Test preparation

The indentor shall be calibrated using the supplied alloy discs. The indentor must be placed perpendicular to the test specimen on a solidly supported surface.

8- Procedure

Set the point sleeve on the surface to be tested. Grasp the instrument firmly between the legs and point sleeve. Apply quickly by hand, increasing force on the case until the dial reaches a maximum value.

Read the maximum value.

Because of variations caused by difference in hardness between resin and filler materials in contact with the indentor, the reported value shall be the average of 6 readings. (For each pipe ends 3 x 120°)
6.6 TM-18 pipe leak tightness

1- Scope
This method covers the determination of the behaviours of pipe under the hydro-pressure.

2- Reference
ASTM D 3754

3- Requirements
No leaking, weeping or fracture of structural wall at 2 times of nominal pressure

4- Frequency and Number of Samples
for all pipe

7- Procedure
Place the pipe in a hydrostatic pressure testing machine that seals ends and exerts no end loads.
Fill the pipe with water after deaeration.
Apply to pipe 2 times of PN
Maintain this pressure minimum 30 sec.
Make the visual inspection “Is there nonconformity – leaking, weeping or fracture of structural wall.”

6.7 TM-19 coupling leaktightness

1- Scope
This method covers the determination of the behaviours of coupling under the hydro-pressure.

2- Reference
ASTM D 3754

3- Requirements
No leaking, weeping or fracture of structural wall at 2 times of nominal pressure

4- Frequency and Number of Samples for all coupling

7- Procedure
Place the coupling in a hydrostatic pressure testing machine that seals ends and exerts no end loads.
Fill the coupling with water after deaeration.
Apply to the coupling 2 times of PN
Maintain this pressure minimum 30 sec.
Make the visual inspection “Is there nonconformity – leaking, weeping or fracture of structural wall –

6.8 TM-20 raw material composition test

1- Scope
This method covers determination of composition of laminates as to resin, glass fiber and filler content.

2- References
ASTM D 2584
3- Requirements
Dependent on pipe type

4- Frequency and Number of Samples

One per day or one per 50 pipes (whichever comes first)

5- Apparatus
Porcelain cup (dia 75 mm)
Balance with an accuracy of 0,1 mg
Electric muffle furnace
Sieve - Mesh 30

6- Procedure

- Cut out 5 test specimens from the laminate in axial direction. Each specimen should be 40 x 40 mm.
 The edges of the cuts should be smooth and free of dust.
- Weigh each specimen separately in a porcelain cup. Note also the weight of the empty cup.
- Ignite the specimens as follows: Muffle furnace temperature: 610 +/- 10°. Place 2 samples in the muffle furnace (only one sample at the time if the laminate thickness is more than 6 mm), and leave it there until the flame ceases. Then remove the samples and put in another 2 samples. At last the 5th sample is placed in the furnace together with the 4 already burned out samples. Leave all samples in the furnace for 30 min. (45 min. if the laminate thickness is more than 6 mm).
- Remove the samples from the furnace and place them on an asbestos plate at room temperature for cooling.
- Weigh each cup with residue.
- Separate the sand from the glass fiber by tapping the residue on a sheet of paper.
- Separate the small pieces of chop roving from the sand by sieving it.
- Separate the hoop roving from the chop roving by using a pair of tweezers.
- Weigh each material.
- As a check, calculate the sum of each material's weight plus the weight of the cup and see that it equals the weight of residue + cup from step 6.

Calculation

\[
\begin{align*}
P &= \left(\frac{m2 - m3}{m2 - m1}\right) \times 100 \\
GH &= \left(\frac{m4 - m1}{m2 - m1}\right) \times 100 \\
GC &= \left(\frac{m5 - m1}{m2 - m1}\right) \times 100 \\
S &= \left(\frac{m6 - m1}{m2 - m1}\right) \times 100
\end{align*}
\]

Check that the sum of percentages is 100.

If the sum is less than 99% or more than 101%, check weights and calculations. If the error is not found, conduct the test again.

\[
\begin{align*}
P &= \% \text{ polyester resin} \\
GH &= \% \text{ hoop roving} \\
GC &= \% \text{ chop roving} \\
S &= \% \text{ sand} \\
m1 &= \text{ mass of porcelain cup} \\
m2 &= \text{ initial total mass of cup plus specimen} \\
m3 &= \text{ mass of cup, hoop roving, chop roving and sand} \\
m4 &= \text{ mass of cup and hoop roving} \\
m5 &= \text{ mass of cup, chop roving and glass surface mat} \\
m6 &= \text{ mass of cup and sand}
\end{align*}
\]
7 Tests Forms

7.1 Polyester Resin
7.2 Silica Sand
7.3 Glassfiber Hoop Roving
7.4 Glassfiber Chop Roving
7.5 EPDM Gasket
7.6 Stiffness, Behaviour Under Deflection, Hardness Circumferential Strength Test Sheet
7.7 Tensile Strength
7.8 Quality Control
7.9 Process Material Tracking